• Function
  • L-Arg
  • Metabolism
Introduction 

There are at least five commercially available synthetic amino acids, namely methionine, lysine, threonine, tryptophan and valine. Currently, arginine (Arg) is available which is produced through bio-fermentation. L-Arg is an essential amino acid for chickens due to unavailability of two separate enzymes in urea cycle in the kidney and almost all urea cycle enzymes in the liver (Leeson and Summers, 2001). The mammalian cells have a fully functional urea cycle. Therefore, L-Arg is not considered as an essential amino acid in swine. However, new data shows that endogenous arginine synthesis through urea cycle is not enough to cover arginine requirements in swine (Wu et al., 2007). Thus, arginine is named to be essential eg in piglets as well. 

Guanidinoacetic acid (GAA) is the precursor of creatine which is synthesized via a two steps process involving two enzymes and three amino acids: arginine, glycine, and methionine. In the first step, arginine: glycine amidinotransferase (AGAT) transfers an amidino group from arginine to the amino group of glycine to produce guanidinoacetate (GAA) and ornithine:

AGAT

Whereas, in the second step, GAA methyltransferase (GAMT) employs S-adenosylmethionine (SAM) to methylate GAA, producing creatine

and S-adenosylhomocysteine (SAH):

GAMT

L-Arg and GAA are used in practice in order to cover arginine requirements of the animals. Thus, understanding the differences between 

the two products are important.

Metabolism of L-Arg and GAA 

L-Arg not only serves as building blocks of proteins eg in muscles but also performs several other vital metabolic functions. Moreover, L-Arg serves as a substrate for the biosynthesis of different molecules such as nitric oxide, GAA, glutamate, ornithine and proline. Nitric oxide as an important mediator of vasodilation contributes to an increase of blood flow to the organs. Nitric oxide also reduces fat synthesis and promotes fat oxidation (Jobgen et al., 2006). L-Arg also improves the carcass yield especially the breast muscles in broilers via formation of glutamate and proline (Khajali and Wideman, 2010). Glutamate, proline and hydroxyproline are also required for the synthesis of connective tissues (Khajali and Wideman, 2010). Similarly, other molecules synthesized from the L-Arg metabolism including ornithine and polyamines contribute in DNA and RNA synthesis for normal cellular growth (Chen et al., 2011).

GAA is an endogenous metabolite of Arg which participate in muscle energy buffering system (Khajali and Wideman, 2010; Chen et al., 2011)

(Fig. 1). High cellular concentration of GAA has a negative feedback on AGAT, thus endogenous synthesis of GAA will not happen when

enough GAA is added through the diet (Takeda et al., 1992).

Metabolism of L-Arg and GAA

 

Comparative performance studies 
Study I:

Ascites, cardiovascular metabolic disorder, is a major challenge under cold stress conditions. It was hypothesized that providing extra Arg can reduce ascites incidences in broilers (Saki et al., 2013). Emami et al. (2016) investigated the effect of L-Arg (0.86-1.72 g/kg of feed) and GAA (0.6-1.2 g/kg of feed) under cold stress conditions. The digestible Arg to digestible Lys ratio was 107:100 in the basal diet. The temperature of one house was according to optimal conditions, whereas, the temperature in the second house was gradually decreased to 17 °C from d 14 onward to the end of experiment in order to induce ascites. L-Arg group significantly (p<0.05) increased body weight (BW) and reduced feed conversion ratio (FCR) as compared to the basal diet and the GAA group (Fig. 2). The authors 

concluded that arginine can help in broiler production under challenging conditions. 

Comparative performance studies

 

Study II: 

Dilger et al., (2013) showed significantly higher body weight gain (BWG) in L-Arg supplemented group as compared to diets supplemented with only GAA or creatine (p<0.05). Adding GAA and creatine on top of L-Arg does not cause any further improvement (Fig. 3). 

Study II

 

Estimations on the arginine sparing effect of GAA

L-Arg sparing effect of GAA is not fully revealed. However, findings from literature could indicate the estimated contribution of protein bound L-Arg into GAA synthesis. In the presence of dietary GAA supplementation, we assume that no L-Arg is being used for internal GAA synthesis, which can give us idea about the Arg sparing effect of GAA. 

Since the L-Arg is the essential amino acid in poultry and conditionally essential in swine, there are specific dietary requirements for the L-Arg contributed by the raw materials. De novo Synthesis of GAA is contributed by Gly, Met and Arg. Gly molecule is used as such, however, in case of Met only methyl group and in case of Arg only amidino group are incorporated. In both situations, Met and Arg can be resynthesized in their respective cycles (Brosnan et al., 2009). 

Brosnan et al., (2009) calculated the contribution of the three amino acids in the creatine synthesis in growing piglets. Around 35% of dietary Met and 20% of dietary Arg contribute to the synthesis of creatine. On the other hand, Wu et al., (2004) have estimated that around 17% of milk Arg may be used for creatine synthesis in piglets. Thus, by using GAA, animal needs 35% extra methionine and can save 20% of dietary Arg. Moreover, Luiking et. al., (2012) concluded that creatine synthesis consumes around 20-30% of the Args amidino groups, whether provided in the diet or synthesized within the body. These findings indicate that if sufficient GAA is supplemented in the animal diet, it may spare up to 20-30% of the protein deposited Arg.

References

1. Brosnan, John T., P. Enoka, P. Wijekoon, Lori Warford-Woolgar, Nathalie L. Trottier, Margaret E. Brosnan, Janet A. Brunton, Robert Bertolo, FP 2009. Creatine Synthesis Is a Major Metabolic Process in Neonatal Piglets and Has Important Implications for Amino Acid Metabolism and Methyl Balance. J. Nut. 139: 12921297

2. Chen, J., M. Wang, Y. Kong, H. Ma and Zou, S. 2011. Comparison of the novel compounds creatine and pyruvateon lipid and protein

metabolism in broiler chickens. Animal. 5: 1082-1089

3. Dilger, RN, K. Bryant-Angeloni, RL Payne, A. Lemme, Parsons, CM 2013. Dietary guanidino acetic acid is an efficacious replacement.

for arginine for young chicks. Poult. Sci. 92: 171-177

4. Emami N., Golian, A., Rhoads, DD and Danesh Mesgaran, M. 2017. Interactive effects of temperature and dietary supplementation of arginine or guanidinoacetic acid on nutritional and physiological responses in male broiler chickens, Br. Poult. Sci. 58:87-94

5. Fouad, AM, W. Chen, D. Ruan, S. Wang, W.G. Xia and Zheng, CT 2016. Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. Int. J. Poult. Sci. 15:81-95

6. Jobgen, WS, SK Fried, WJ Fu, CJ Meininger and Wu, G. 2006. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 17: 571-588

7. Khajali, F. and Wideman, R. F. 2010. Dietary arginine: Metabolic, environmental, immunological and physiological interrelationships.

World's Poult. Sci. J. 66: 751-766

8. Leeson, S., and J. D. Summers. 2001. Scotts Nutrition of the Chicken. Publ. Univ. Books, Guelph, Ontario Canada 

9. Luiking, Yvette C., A. M. Gabriella Ten Have, R. Wolfe, and Nicolaas E. P. Deutz. 2012. Arginine de novo and nitric oxide production in disease states. Am. J. Phy.-Endo. Meta. 303: 1177-1189

10. Saki, A., Haghighat, M. and Khajali, F. 2013. Supplemental arginine administered in ovo or in the feed reduces the susceptibility of broilers to pulmonary hypertension syndrome. Br. Poult. Sci. 54:75-580

11. M. Takeda, I. Kiyatake, H. Koide, K. Y. Jung, H. Endou. 1992. Biosynthesis of guanidinoacetic acid in isolated renal tubules. Eur J Clin Chem Clin Biochem. 30:325-331

12. Wu G., Knabe DA, Kim SW 2004. Arginine nutrition in neonatal pigs. J. Nutr. 134:S2783-90.

13. Wu, G., Bazer, FW, Davis, TA, Jaeger, LA, Johnson, GA, Kim, SW, Knabe, DA, Meininger, C., Spencer, TE and Yin, Y. 2007. Review article important roles for the arginine family of amino acids in swine nutrition and production. Live. Sci. 112:8-22

개인정보처리방침

개인정보의 자동 수집 장치·운영·거부사항

고객님의 정보를 수시로 저장하고 찾아내는 ‘쿠키(cookie)’를 운용합니다. 쿠키란 씨제이제일제당(주)의 웹사이트를 운영하는데 이용되는 서버가 고객님의 브라우저(인터넷 익스플로러 등)에 보내는 아주 작은 텍스트 데이터로서 고객님이 사이트에 로그온 한 상태에서 고객님을 인증하기 위해 사용되고 있습니다. 쿠키는 고객님의 컴퓨터는 식별하지만 고객님을 개인적으로 식별하지는 않습니다. 또한 고객님은 쿠키에 대한 선택권이 있습니다.

웹 브라우저 상단의 도구 > 인터넷 옵션 탭(option tab)에서 모든 쿠키를 다 받아들이거나, 쿠키가 설치될 때 통지를 보내도록 하거나, 아니면 모든 쿠키를 거부할 수 있는 선택권을 가질 수 있습니다. 고객님이 쿠키를 거부하겠다고 선택하는 경우 사용자 등록을 요하는 서버의 서비스는 이용할 수 없음을 감안하시기 바랍니다.

씨제이제일제당(주)는 다음과 같은 목적을 위해 쿠키를 사용합니다.

  • 접속 빈도나 방문 시간 등을 분석하고 고객님의 취향과 관심 분야를 파악하여 타겟(target) 마케팅 및 서비스 개편 등의 척도로 활용합니다.

※ 서비스 이용 과정에서 생성/수집되는 정보

수집 항목 이용 목적
서비스 이용 기록, 접속로그, 접속IP, 단말접속 일시, PUSH토큰 개인정보 침해 사고에 대한 대비, 분쟁 조정을 위한 기록보존, 서비스 혜택 안내

※ 모바일 서비스 이용 과정에서 생성/수집되는 정보

구분 접근항목 접근목적
모바일 앱
접근권한
필수 기기정보 및 앱 기록권한 앱 서비스 최적화, 오류확인,
서비스 분석 및 통계
선택 iOS 사진 미디어, 카메라 접근 권한
생체정보(안면, 지문) 접근 권한
위치 접근 권한
앱 서비스 제공 및 최적화
안드로이드 주소록 접근 권한
사진 미디어, 카메라 접근 권한
생체정보(지문, 안면) 접근 권한
위치 접근 권한

개인정보보호책임자 이름 및 부서·연락처

고객님의 개인정보를 보호하고 개인정보와 관련한 불만을 처리하기 위하여 씨제이제일제당(주)는 개인정보보호책임자를 두고 있습니다. 개인정보와 관련한 문의 사항이 있으시면 아래의 개인정보보호책임자에게 연락 주시기 바랍니다. 고객님의 문의 사항에 신속하고 성실하게 답변해드리겠습니다.

부서 이름 전화번호 이메일
FNT 마케팅전략)
브랜드마케팅팀
김고은 02-6740-3430 cjbiobrand@cj.net
(평일 오전 9~12시, 오후 1시~5시 30분)

개인정보 침해 관련 상담 및 신고

개인정보침해에 대한 신고나 상담이 필요하신 경우, 다음의 관련 기관으로 문의하여 도움을 받으실 수 있습니다.

개인정보침해신고센터 개인정보분쟁조정위원회 대검찰청사이버수사과 경찰청 사이버안전국
(국번없이) 118
privacy.kisa.or.kr
1833-6972
www.kopico.go.kr
(국번없이) 1301
www.spo.go.kr
(국번없이) 182
cyberbureau.police.go.kr

본 개인정보 처리방침은 법령, 정책 또는 보안기술의 변경에 따라 그 내용이 변경될 수 있으며, 내용의 추가 및 삭제, 수정이 있을 시에는 제일제당 인터넷사이트를 통해 이유 및 변경내용을 공지하도록 하겠습니다.

  • 개인정보처리방침 수정일자 : 2023-03-20